Reelin Controls Neuronal Positioning by Promoting Cell-Matrix Adhesion via Inside-Out Activation of Integrin α5β1
نویسندگان
چکیده
Birthdate-dependent neuronal layering is fundamental to neocortical functions. The extracellular protein Reelin is essential for the establishment of the eventual neuronal alignments. Although this Reelin-dependent neuronal layering is mainly established by the final neuronal migration step called "terminal translocation" beneath the marginal zone (MZ), the molecular mechanism underlying the control by Reelin of terminal translocation and layer formation is largely unknown. Here, we show that after Reelin binds to its receptors, it activates integrin α5β1 through the intracellular Dab1-Crk/CrkL-C3G-Rap1 pathway. This intracellular pathway is required for terminal translocation and the activation of Reelin signaling promotes neuronal adhesion to fibronectin through integrin α5β1. Since fibronectin is localized in the MZ, the activated integrin α5β1 then controls terminal translocation, which mediates proper neuronal alignments in the mature cortex. These data indicate that Reelin-dependent activation of neuronal adhesion to the extracellular matrix is crucial for the eventual birth-date-dependent layering of the neocortex.
منابع مشابه
Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3
Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expressio...
متن کاملReelin promotes adhesion of multiple myeloma cells to bone marrow stromal cells via integrin β1 signaling
The close interaction between tumor cells and bone marrow stromal cells plays a crucial role in the tumorigenesis of multiple myeloma (MM). Reelin, an extracellular matrix protein, is found expressed in myeloma cells and is negatively associated with prognosis. We examined the role of Reelin in myeloma cell adhesion to bone marrow stromal cells and the signaling pathways involved. The results r...
متن کاملEndoglin mediates fibronectin/α5β1 integrin and TGF-β pathway crosstalk in endothelial cells.
Both the transforming growth factor β (TGF-β) and integrin signalling pathways have well-established roles in angiogenesis. However, how these pathways integrate to regulate angiogenesis is unknown. Here, we show that the extracellular matrix component, fibronectin, and its cellular receptor, α5β1 integrin, specifically increase TGF-β1- and BMP-9-induced Smad1/5/8 phosphorylation via the TGF-β ...
متن کاملMesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals.
Cell migration during vascular remodelling is regulated by crosstalk between growth factor receptors and integrin receptors, which together coordinate cytoskeletal and motogenic changes. Here, we report extracellular matrix (ECM)-directed crosstalk between platelet-derived growth factor receptor (PDGFR)-β and α5β1-integrin, which controls the migration of mesenchymal stem (stromal) cells (MSCs)...
متن کاملIntegrin α5β1 simultaneously controls EGFR-dependent proliferation and Akt-dependent pro-survival signaling in epidermoid carcinoma cells
To delineate distinctive role of the components of α5β1 integrin-EGFR axis in control of epidermoid carcinoma cell proliferation, we performed individual inhibition of α5β1 and EGFR via genetic and phamacological methods, respectively. We demonstrated that pharmacological inhibition of epidermal growth factor receptor (EGFR) significantly affected proliferation of A431 human cells by inducing t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 76 شماره
صفحات -
تاریخ انتشار 2012